Does Presence of a Mid-Ocean Ridge Enhance Biomass and Biodiversity?
نویسندگان
چکیده
In contrast to generally sparse biological communities in open-ocean settings, seamounts and ridges are perceived as areas of elevated productivity and biodiversity capable of supporting commercial fisheries. We investigated the origin of this apparent biological enhancement over a segment of the North Mid-Atlantic Ridge (MAR) using sonar, corers, trawls, traps, and a remotely operated vehicle to survey habitat, biomass, and biodiversity. Satellite remote sensing provided information on flow patterns, thermal fronts, and primary production, while sediment traps measured export flux during 2007-2010. The MAR, 3,704,404 km(2) in area, accounts for 44.7% lower bathyal habitat (800-3500 m depth) in the North Atlantic and is dominated by fine soft sediment substrate (95% of area) on a series of flat terraces with intervening slopes either side of the ridge axis contributing to habitat heterogeneity. The MAR fauna comprises mainly species known from continental margins with no evidence of greater biodiversity. Primary production and export flux over the MAR were not enhanced compared with a nearby reference station over the Porcupine Abyssal Plain. Biomasses of benthic macrofauna and megafauna were similar to global averages at the same depths totalling an estimated 258.9 kt C over the entire lower bathyal north MAR. A hypothetical flat plain at 3500 m depth in place of the MAR would contain 85.6 kt C, implying an increase of 173.3 kt C attributable to the presence of the Ridge. This is approximately equal to 167 kt C of estimated pelagic biomass displaced by the volume of the MAR. There is no enhancement of biological productivity over the MAR; oceanic bathypelagic species are replaced by benthic fauna otherwise unable to survive in the mid ocean. We propose that globally sea floor elevation has no effect on deep sea biomass; pelagic plus benthic biomass is constant within a given surface productivity regime.
منابع مشابه
Vertical structure, biomass and topographic association of deep-pelagic fishes in relation to a mid-ocean ridge system
The assemblage structure and vertical distribution of deep-pelagic fishes relative to a mid-ocean ridge system are described from an acoustic and discrete-depth trawling survey conducted as part of the international Census of Marine Life field project MAR-ECO /http://www.mar-eco.noS. The 36-station, zig-zag survey along the northern Mid-Atlantic Ridge (MAR; Iceland to the Azores) covered the fu...
متن کاملPetrology, geochemistry, and petrogenesis of mafic dykes from the Kermanshah Ophiolite in Sahneh-Harsin area of Western Iran
The Kermanshah ophiolite complex is a part of the Mediterranean–Zagros–Oman Tethyan ophiolites, located in the structural–tectonic zone of western Iran in the northern part of the Zagros main thrust. Doleritic sheeted dykes are well exposed within the ophiolite in the south of Sahneh. These dykes contain high MgO, Na2O, low TiO2 (2O5, and K2O contents, and high FeOt/MgO and LILE/HFSE ratios. Th...
متن کاملThe mafic rocks along the North Tabriz Fault, possible remnants of Neo-Tethys oceanic crust in NW Iran
The North Tabriz Fault is seismologically an active fault with current right lateral strike-slip movements. Restricted mafic to intermediate Late Cretaceous igneous rocks are exposed along the North Tabriz Fault. Whole rock samples and clinopyroxene phenocrysts geochemistry were studied in order to characterize the petrogenesis of these mafic rocks and their possible relation to an oceanic crus...
متن کاملModeling the effects of tidal loading on mid-ocean ridge hydrothermal systems
[1] Tidal signals are observed in numerous time-series measurements obtained from mid-ocean ridge hydrothermal systems. In some instances these tidal signals are clearly the result of ocean currents, but in other instances it appears that the signals may originate in the subseafloor formation. In order to explore the effect of ocean tidal loading on mid-ocean ridge hydrothermal systems, we appl...
متن کاملCarlsberg Ridge and Mid-Atlantic Ridge_ Comparison of slow spreading centre analogues
Eighty per cent of all mid-ocean spreading centres are slow. Using a mixture of global bathymetry data and ship-board multibeam echosounder data, we explore the morphology of global mid-ocean ridges and compare two slow spreading analogues: the Carlsberg Ridge in the north-west Indian Ocean between 571E and 601E, and the Kane to Atlantis super-segment of the Mid-Atlantic Ridge between 211N and ...
متن کامل